Properties

Label 1792.289
Modulus $1792$
Conductor $224$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1792, base_ring=CyclotomicField(24))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,21,8]))
 
pari: [g,chi] = znchar(Mod(289,1792))
 

Basic properties

Modulus: \(1792\)
Conductor: \(224\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{224}(205,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1792.bh

\(\chi_{1792}(289,\cdot)\) \(\chi_{1792}(417,\cdot)\) \(\chi_{1792}(737,\cdot)\) \(\chi_{1792}(865,\cdot)\) \(\chi_{1792}(1185,\cdot)\) \(\chi_{1792}(1313,\cdot)\) \(\chi_{1792}(1633,\cdot)\) \(\chi_{1792}(1761,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.329123002999201416128761938882499016916992.1

Values on generators

\((1023,1541,1025)\) → \((1,e\left(\frac{7}{8}\right),e\left(\frac{1}{3}\right))\)

Values

\(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\(1\)\(1\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{17}{24}\right)\)\(e\left(\frac{1}{8}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{1}{12}\right)\)
value at e.g. 2