# Properties

 Label 1792.1469 Modulus $1792$ Conductor $1792$ Order $64$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1792, base_ring=CyclotomicField(64))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,51,32]))

pari: [g,chi] = znchar(Mod(1469,1792))

## Basic properties

 Modulus: $$1792$$ Conductor: $$1792$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$64$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1792.bt

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $\Q(\zeta_{64})$ Fixed field: Number field defined by a degree 64 polynomial

## Values on generators

$$(1023,1541,1025)$$ → $$(1,e\left(\frac{51}{64}\right),-1)$$

## Values

 $$-1$$ $$1$$ $$3$$ $$5$$ $$9$$ $$11$$ $$13$$ $$15$$ $$17$$ $$19$$ $$23$$ $$25$$ $$-1$$ $$1$$ $$e\left(\frac{25}{64}\right)$$ $$e\left(\frac{19}{64}\right)$$ $$e\left(\frac{25}{32}\right)$$ $$e\left(\frac{47}{64}\right)$$ $$e\left(\frac{61}{64}\right)$$ $$e\left(\frac{11}{16}\right)$$ $$e\left(\frac{13}{16}\right)$$ $$e\left(\frac{53}{64}\right)$$ $$e\left(\frac{5}{32}\right)$$ $$e\left(\frac{19}{32}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 1792 }(1469,a) \;$$ at $$\;a =$$ e.g. 2