Properties

Label 1764.883
Modulus $1764$
Conductor $4$
Order $2$
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1764)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([1,0,0]))
 
pari: [g,chi] = znchar(Mod(883,1764))
 

Basic properties

Modulus: \(1764\)
Conductor: \(4\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{4}(3,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1764.g

\(\chi_{1764}(883,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((883,785,1081)\) → \((-1,1,1)\)

Values

\(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\(-1\)\(1\)\(1\)\(-1\)\(1\)\(1\)\(-1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)
value at e.g. 2

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-1}) \)