# Properties

 Label 1764.65 Modulus $1764$ Conductor $441$ Order $42$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1764)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,7,20]))

pari: [g,chi] = znchar(Mod(65,1764))

## Basic properties

 Modulus: $$1764$$ Conductor: $$441$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$42$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{441}(65,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1764.db

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(883,785,1081)$$ → $$(1,e\left(\frac{1}{6}\right),e\left(\frac{10}{21}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$37$$ $$-1$$ $$1$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{21}\right)$$
 value at e.g. 2