Properties

Label 1764.137
Modulus $1764$
Conductor $441$
Order $42$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1764)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,7,34]))
 
pari: [g,chi] = znchar(Mod(137,1764))
 

Basic properties

Modulus: \(1764\)
Conductor: \(441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{441}(137,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1764.cg

\(\chi_{1764}(137,\cdot)\) \(\chi_{1764}(149,\cdot)\) \(\chi_{1764}(389,\cdot)\) \(\chi_{1764}(401,\cdot)\) \(\chi_{1764}(641,\cdot)\) \(\chi_{1764}(653,\cdot)\) \(\chi_{1764}(893,\cdot)\) \(\chi_{1764}(905,\cdot)\) \(\chi_{1764}(1397,\cdot)\) \(\chi_{1764}(1409,\cdot)\) \(\chi_{1764}(1649,\cdot)\) \(\chi_{1764}(1661,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((883,785,1081)\) → \((1,e\left(\frac{1}{6}\right),e\left(\frac{17}{21}\right))\)

Values

\(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\(-1\)\(1\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{1}{21}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{31}{42}\right)\)\(1\)\(e\left(\frac{19}{21}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.0.19323691188644130003058806336970857802190577987052478847817749725579565668391007948695756687627.1