Properties

Label 1764.131
Modulus $1764$
Conductor $1764$
Order $42$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1764)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([21,35,41]))
 
pari: [g,chi] = znchar(Mod(131,1764))
 

Basic properties

Modulus: \(1764\)
Conductor: \(1764\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1764.cw

\(\chi_{1764}(131,\cdot)\) \(\chi_{1764}(383,\cdot)\) \(\chi_{1764}(479,\cdot)\) \(\chi_{1764}(635,\cdot)\) \(\chi_{1764}(731,\cdot)\) \(\chi_{1764}(887,\cdot)\) \(\chi_{1764}(983,\cdot)\) \(\chi_{1764}(1139,\cdot)\) \(\chi_{1764}(1235,\cdot)\) \(\chi_{1764}(1487,\cdot)\) \(\chi_{1764}(1643,\cdot)\) \(\chi_{1764}(1739,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((883,785,1081)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{41}{42}\right))\)

Values

\(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\(-1\)\(1\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{17}{42}\right)\)\(1\)\(e\left(\frac{5}{21}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.0.594905448297071958649415344409202411272524582191201645168397283612406235485559112254331131690310420404371456.2