Properties

Label 1764.13
Modulus $1764$
Conductor $441$
Order $42$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1764)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,14,33]))
 
pari: [g,chi] = znchar(Mod(13,1764))
 

Basic properties

Modulus: \(1764\)
Conductor: \(441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{441}(13,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1764.cl

\(\chi_{1764}(13,\cdot)\) \(\chi_{1764}(265,\cdot)\) \(\chi_{1764}(349,\cdot)\) \(\chi_{1764}(517,\cdot)\) \(\chi_{1764}(601,\cdot)\) \(\chi_{1764}(769,\cdot)\) \(\chi_{1764}(853,\cdot)\) \(\chi_{1764}(1021,\cdot)\) \(\chi_{1764}(1105,\cdot)\) \(\chi_{1764}(1357,\cdot)\) \(\chi_{1764}(1525,\cdot)\) \(\chi_{1764}(1609,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((883,785,1081)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{11}{14}\right))\)

Values

\(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\(-1\)\(1\)\(e\left(\frac{19}{42}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{9}{14}\right)\)\(-1\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{7}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.0.1262243855813190280427121715132984375347219151286986664564488191624506216499510611319861303.1