# Properties

 Label 175.g Modulus $175$ Conductor $5$ Order $4$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(175, base_ring=CyclotomicField(4))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([3,0]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(43,175))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$175$$ Conductor: $$5$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 5.c sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: $$\Q(\zeta_{5})$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$ $$16$$
$$\chi_{175}(43,\cdot)$$ $$-1$$ $$1$$ $$-i$$ $$i$$ $$-1$$ $$1$$ $$i$$ $$-1$$ $$1$$ $$-i$$ $$i$$ $$1$$
$$\chi_{175}(57,\cdot)$$ $$-1$$ $$1$$ $$i$$ $$-i$$ $$-1$$ $$1$$ $$-i$$ $$-1$$ $$1$$ $$i$$ $$-i$$ $$1$$