# Properties

 Label 175.2 Modulus $175$ Conductor $175$ Order $60$ Real no Primitive yes Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(175, base_ring=CyclotomicField(60))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([3,20]))

pari: [g,chi] = znchar(Mod(2,175))

## Basic properties

 Modulus: $$175$$ Conductor: $$175$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$60$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 175.w

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(127,101)$$ → $$(e\left(\frac{1}{20}\right),e\left(\frac{1}{3}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$ $$16$$ $$-1$$ $$1$$ $$e\left(\frac{43}{60}\right)$$ $$e\left(\frac{41}{60}\right)$$ $$e\left(\frac{13}{30}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{11}{30}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{7}{60}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{13}{15}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{60})$$ Fixed field: Number field defined by a degree 60 polynomial

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 175 }(2,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{175}(2,\cdot)) = \sum_{r\in \Z/175\Z} \chi_{175}(2,r) e\left(\frac{2r}{175}\right) = -1.1141162651+13.1817580371i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 175 }(2,·),\chi_{ 175 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{175}(2,\cdot),\chi_{175}(1,\cdot)) = \sum_{r\in \Z/175\Z} \chi_{175}(2,r) \chi_{175}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 175 }(2,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{175}(2,·)) = \sum_{r \in \Z/175\Z} \chi_{175}(2,r) e\left(\frac{1 r + 2 r^{-1}}{175}\right) = 12.0679929142+9.7724679746i$$