sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([3,20]))
pari:[g,chi] = znchar(Mod(2,175))
Modulus: | \(175\) | |
Conductor: | \(175\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{175}(2,\cdot)\)
\(\chi_{175}(23,\cdot)\)
\(\chi_{175}(37,\cdot)\)
\(\chi_{175}(53,\cdot)\)
\(\chi_{175}(58,\cdot)\)
\(\chi_{175}(67,\cdot)\)
\(\chi_{175}(72,\cdot)\)
\(\chi_{175}(88,\cdot)\)
\(\chi_{175}(102,\cdot)\)
\(\chi_{175}(123,\cdot)\)
\(\chi_{175}(128,\cdot)\)
\(\chi_{175}(137,\cdot)\)
\(\chi_{175}(142,\cdot)\)
\(\chi_{175}(158,\cdot)\)
\(\chi_{175}(163,\cdot)\)
\(\chi_{175}(172,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,101)\) → \((e\left(\frac{1}{20}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 175 }(2, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{43}{60}\right)\) | \(e\left(\frac{41}{60}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{13}{15}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)