Properties

Conductor 17
Order 16
Real No
Primitive Yes
Parity Odd
Orbit Label 17.e

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(17)
 
sage: chi = H[6]
 
pari: [g,chi] = znchar(Mod(6,17))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 17
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 16
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Odd
Orbit label = 17.e
Orbit index = 5

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{17}(3,\cdot)\) \(\chi_{17}(5,\cdot)\) \(\chi_{17}(6,\cdot)\) \(\chi_{17}(7,\cdot)\) \(\chi_{17}(10,\cdot)\) \(\chi_{17}(11,\cdot)\) \(\chi_{17}(12,\cdot)\) \(\chi_{17}(14,\cdot)\)

Values on generators

\(3\) → \(e\left(\frac{15}{16}\right)\)

Values

-11234567891011
\(-1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(i\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{9}{16}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{16})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 17 }(6,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{17}(6,\cdot)) = \sum_{r\in \Z/17\Z} \chi_{17}(6,r) e\left(\frac{2r}{17}\right) = 0.7634447567+4.0518084979i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 17 }(6,·),\chi_{ 17 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{17}(6,\cdot),\chi_{17}(1,\cdot)) = \sum_{r\in \Z/17\Z} \chi_{17}(6,r) \chi_{17}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 17 }(6,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{17}(6,·)) = \sum_{r \in \Z/17\Z} \chi_{17}(6,r) e\left(\frac{1 r + 2 r^{-1}}{17}\right) = 0.7826878958+-1.8895757331i \)