sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(17, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([5]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(8,17))
         
     
    
  
   | Modulus: |  \(17\) |   |  
   | Conductor: |  \(17\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(8\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{17}(2,\cdot)\)
  \(\chi_{17}(8,\cdot)\)
  \(\chi_{17}(9,\cdot)\)
  \(\chi_{17}(15,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\(3\) → \(e\left(\frac{5}{8}\right)\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |       
    
    
      | \( \chi_{ 17 }(8, a) \) | 
      \(1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)