sage: H = DirichletGroup(17)
pari: g = idealstar(,17,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 16 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{16}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{17}(3,\cdot)$ |
Characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{17}(1,\cdot)\) | 17.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{17}(2,\cdot)\) | 17.d | 8 | yes | \(1\) | \(1\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{17}(3,\cdot)\) | 17.e | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-i\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{17}(4,\cdot)\) | 17.c | 4 | yes | \(1\) | \(1\) | \(-1\) | \(-i\) | \(1\) | \(-i\) | \(i\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(i\) |
\(\chi_{17}(5,\cdot)\) | 17.e | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) |
\(\chi_{17}(6,\cdot)\) | 17.e | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(i\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{17}(7,\cdot)\) | 17.e | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(i\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{17}(8,\cdot)\) | 17.d | 8 | yes | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{17}(9,\cdot)\) | 17.d | 8 | yes | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(i\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{17}(10,\cdot)\) | 17.e | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(i\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{17}(11,\cdot)\) | 17.e | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{17}(12,\cdot)\) | 17.e | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{17}(13,\cdot)\) | 17.c | 4 | yes | \(1\) | \(1\) | \(-1\) | \(i\) | \(1\) | \(i\) | \(-i\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(-i\) |
\(\chi_{17}(14,\cdot)\) | 17.e | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{17}(15,\cdot)\) | 17.d | 8 | yes | \(1\) | \(1\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{17}(16,\cdot)\) | 17.b | 2 | yes | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |