sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([25]))
pari:[g,chi] = znchar(Mod(21,169))
| Modulus: | \(169\) | |
| Conductor: | \(169\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{169}(5,\cdot)\)
\(\chi_{169}(8,\cdot)\)
\(\chi_{169}(18,\cdot)\)
\(\chi_{169}(21,\cdot)\)
\(\chi_{169}(31,\cdot)\)
\(\chi_{169}(34,\cdot)\)
\(\chi_{169}(44,\cdot)\)
\(\chi_{169}(47,\cdot)\)
\(\chi_{169}(57,\cdot)\)
\(\chi_{169}(60,\cdot)\)
\(\chi_{169}(73,\cdot)\)
\(\chi_{169}(83,\cdot)\)
\(\chi_{169}(86,\cdot)\)
\(\chi_{169}(96,\cdot)\)
\(\chi_{169}(109,\cdot)\)
\(\chi_{169}(112,\cdot)\)
\(\chi_{169}(122,\cdot)\)
\(\chi_{169}(125,\cdot)\)
\(\chi_{169}(135,\cdot)\)
\(\chi_{169}(138,\cdot)\)
\(\chi_{169}(148,\cdot)\)
\(\chi_{169}(151,\cdot)\)
\(\chi_{169}(161,\cdot)\)
\(\chi_{169}(164,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{25}{52}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 169 }(21, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{27}{52}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)