sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([7]))
pari:[g,chi] = znchar(Mod(116,169))
| Modulus: | \(169\) | |
| Conductor: | \(169\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(26\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{169}(12,\cdot)\)
\(\chi_{169}(25,\cdot)\)
\(\chi_{169}(38,\cdot)\)
\(\chi_{169}(51,\cdot)\)
\(\chi_{169}(64,\cdot)\)
\(\chi_{169}(77,\cdot)\)
\(\chi_{169}(90,\cdot)\)
\(\chi_{169}(103,\cdot)\)
\(\chi_{169}(116,\cdot)\)
\(\chi_{169}(129,\cdot)\)
\(\chi_{169}(142,\cdot)\)
\(\chi_{169}(155,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{7}{26}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 169 }(116, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)