sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([10]))
pari:[g,chi] = znchar(Mod(100,169))
Modulus: | \(169\) | |
Conductor: | \(169\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(39\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{169}(3,\cdot)\)
\(\chi_{169}(9,\cdot)\)
\(\chi_{169}(16,\cdot)\)
\(\chi_{169}(29,\cdot)\)
\(\chi_{169}(35,\cdot)\)
\(\chi_{169}(42,\cdot)\)
\(\chi_{169}(48,\cdot)\)
\(\chi_{169}(55,\cdot)\)
\(\chi_{169}(61,\cdot)\)
\(\chi_{169}(68,\cdot)\)
\(\chi_{169}(74,\cdot)\)
\(\chi_{169}(81,\cdot)\)
\(\chi_{169}(87,\cdot)\)
\(\chi_{169}(94,\cdot)\)
\(\chi_{169}(100,\cdot)\)
\(\chi_{169}(107,\cdot)\)
\(\chi_{169}(113,\cdot)\)
\(\chi_{169}(120,\cdot)\)
\(\chi_{169}(126,\cdot)\)
\(\chi_{169}(133,\cdot)\)
\(\chi_{169}(139,\cdot)\)
\(\chi_{169}(152,\cdot)\)
\(\chi_{169}(159,\cdot)\)
\(\chi_{169}(165,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{5}{39}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 169 }(100, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)