sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(169, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([59]))
pari:[g,chi] = znchar(Mod(140,169))
| Modulus: | \(169\) | |
| Conductor: | \(169\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{169}(4,\cdot)\)
\(\chi_{169}(10,\cdot)\)
\(\chi_{169}(17,\cdot)\)
\(\chi_{169}(30,\cdot)\)
\(\chi_{169}(36,\cdot)\)
\(\chi_{169}(43,\cdot)\)
\(\chi_{169}(49,\cdot)\)
\(\chi_{169}(56,\cdot)\)
\(\chi_{169}(62,\cdot)\)
\(\chi_{169}(69,\cdot)\)
\(\chi_{169}(75,\cdot)\)
\(\chi_{169}(82,\cdot)\)
\(\chi_{169}(88,\cdot)\)
\(\chi_{169}(95,\cdot)\)
\(\chi_{169}(101,\cdot)\)
\(\chi_{169}(108,\cdot)\)
\(\chi_{169}(114,\cdot)\)
\(\chi_{169}(121,\cdot)\)
\(\chi_{169}(127,\cdot)\)
\(\chi_{169}(134,\cdot)\)
\(\chi_{169}(140,\cdot)\)
\(\chi_{169}(153,\cdot)\)
\(\chi_{169}(160,\cdot)\)
\(\chi_{169}(166,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{59}{78}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 169 }(140, a) \) |
\(1\) | \(1\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)