sage: H = DirichletGroup(1640)
pari: g = idealstar(,1640,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 640 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4}\times C_{40}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{1640}(1231,\cdot)$, $\chi_{1640}(821,\cdot)$, $\chi_{1640}(657,\cdot)$, $\chi_{1640}(1441,\cdot)$ |
First 32 of 640 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1640}(1,\cdot)\) | 1640.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{1640}(3,\cdot)\) | 1640.ca | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(i\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1640}(7,\cdot)\) | 1640.dy | 40 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(-i\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1640}(9,\cdot)\) | 1640.z | 4 | no | \(1\) | \(1\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(-i\) | \(i\) | \(-i\) | \(-1\) | \(-1\) | \(i\) |
\(\chi_{1640}(11,\cdot)\) | 1640.dt | 40 | no | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(i\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1640}(13,\cdot)\) | 1640.eb | 40 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(-i\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{1640}(17,\cdot)\) | 1640.ea | 40 | no | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(i\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{19}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1640}(19,\cdot)\) | 1640.ee | 40 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(-i\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1640}(21,\cdot)\) | 1640.dc | 20 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{13}{20}\right)\) | \(-1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(i\) |
\(\chi_{1640}(23,\cdot)\) | 1640.cy | 20 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{7}{20}\right)\) | \(-1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(-i\) |
\(\chi_{1640}(27,\cdot)\) | 1640.ca | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{1640}(29,\cdot)\) | 1640.du | 40 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(i\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{1640}(31,\cdot)\) | 1640.cn | 10 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{4}{5}\right)\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(1\) |
\(\chi_{1640}(33,\cdot)\) | 1640.dq | 20 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(1\) |
\(\chi_{1640}(37,\cdot)\) | 1640.dm | 20 | yes | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{9}{20}\right)\) | \(-1\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(-i\) |
\(\chi_{1640}(39,\cdot)\) | 1640.dh | 20 | no | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{17}{20}\right)\) | \(-1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(-i\) |
\(\chi_{1640}(43,\cdot)\) | 1640.dp | 20 | yes | \(1\) | \(1\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(1\) |
\(\chi_{1640}(47,\cdot)\) | 1640.dx | 40 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(i\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{1640}(49,\cdot)\) | 1640.di | 20 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{11}{20}\right)\) | \(-1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(i\) |
\(\chi_{1640}(51,\cdot)\) | 1640.cr | 10 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(1\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(1\) |
\(\chi_{1640}(53,\cdot)\) | 1640.eb | 40 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(-i\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{3}{40}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{1640}(57,\cdot)\) | 1640.cz | 20 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{13}{20}\right)\) | \(-1\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(i\) |
\(\chi_{1640}(59,\cdot)\) | 1640.cf | 10 | yes | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{3}{5}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(-1\) |
\(\chi_{1640}(61,\cdot)\) | 1640.dc | 20 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{3}{20}\right)\) | \(-1\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(-i\) |
\(\chi_{1640}(63,\cdot)\) | 1640.dy | 40 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(i\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{1640}(67,\cdot)\) | 1640.dw | 40 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(i\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{17}{40}\right)\) | \(e\left(\frac{11}{40}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1640}(69,\cdot)\) | 1640.du | 40 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(i\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{21}{40}\right)\) | \(e\left(\frac{23}{40}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1640}(71,\cdot)\) | 1640.ds | 40 | no | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(i\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{33}{40}\right)\) | \(e\left(\frac{39}{40}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1640}(73,\cdot)\) | 1640.bl | 4 | no | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-i\) | \(1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(1\) |
\(\chi_{1640}(77,\cdot)\) | 1640.do | 20 | yes | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(1\) |
\(\chi_{1640}(79,\cdot)\) | 1640.br | 8 | no | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{1640}(81,\cdot)\) | 1640.b | 2 | no | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) |