Properties

Modulus $1640$
Structure \(C_{2}\times C_{2}\times C_{4}\times C_{40}\)
Order $640$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(1640)
 
pari: g = idealstar(,1640,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 640
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{4}\times C_{40}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{1640}(1231,\cdot)$, $\chi_{1640}(821,\cdot)$, $\chi_{1640}(657,\cdot)$, $\chi_{1640}(1441,\cdot)$

First 32 of 640 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{1640}(1,\cdot)\) 1640.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1640}(3,\cdot)\) 1640.ca 8 yes \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(i\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{1640}(7,\cdot)\) 1640.dy 40 no \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{31}{40}\right)\) \(-i\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{1640}(9,\cdot)\) 1640.z 4 no \(1\) \(1\) \(-i\) \(-i\) \(-1\) \(i\) \(-i\) \(i\) \(-i\) \(-1\) \(-1\) \(i\)
\(\chi_{1640}(11,\cdot)\) 1640.dt 40 no \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{40}\right)\) \(i\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1640}(13,\cdot)\) 1640.eb 40 yes \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{39}{40}\right)\) \(-i\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{1640}(17,\cdot)\) 1640.ea 40 no \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{40}\right)\) \(i\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1640}(19,\cdot)\) 1640.ee 40 yes \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{31}{40}\right)\) \(-i\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{1640}(21,\cdot)\) 1640.dc 20 no \(1\) \(1\) \(-i\) \(e\left(\frac{13}{20}\right)\) \(-1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(i\)
\(\chi_{1640}(23,\cdot)\) 1640.cy 20 no \(1\) \(1\) \(i\) \(e\left(\frac{7}{20}\right)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(-i\)
\(\chi_{1640}(27,\cdot)\) 1640.ca 8 yes \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(i\) \(-i\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{1640}(29,\cdot)\) 1640.du 40 yes \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{40}\right)\) \(i\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{1640}(31,\cdot)\) 1640.cn 10 no \(-1\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(1\)
\(\chi_{1640}(33,\cdot)\) 1640.dq 20 no \(-1\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(1\)
\(\chi_{1640}(37,\cdot)\) 1640.dm 20 yes \(-1\) \(1\) \(i\) \(e\left(\frac{9}{20}\right)\) \(-1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(-i\)
\(\chi_{1640}(39,\cdot)\) 1640.dh 20 no \(-1\) \(1\) \(i\) \(e\left(\frac{17}{20}\right)\) \(-1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(-i\)
\(\chi_{1640}(43,\cdot)\) 1640.dp 20 yes \(1\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(1\)
\(\chi_{1640}(47,\cdot)\) 1640.dx 40 no \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{29}{40}\right)\) \(i\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{1640}(49,\cdot)\) 1640.di 20 no \(1\) \(1\) \(-i\) \(e\left(\frac{11}{20}\right)\) \(-1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\)
\(\chi_{1640}(51,\cdot)\) 1640.cr 10 no \(-1\) \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(1\)
\(\chi_{1640}(53,\cdot)\) 1640.eb 40 yes \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{40}\right)\) \(-i\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{1640}(57,\cdot)\) 1640.cz 20 no \(-1\) \(1\) \(-i\) \(e\left(\frac{13}{20}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(i\)
\(\chi_{1640}(59,\cdot)\) 1640.cf 10 yes \(-1\) \(1\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(-1\)
\(\chi_{1640}(61,\cdot)\) 1640.dc 20 no \(1\) \(1\) \(i\) \(e\left(\frac{3}{20}\right)\) \(-1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(-i\)
\(\chi_{1640}(63,\cdot)\) 1640.dy 40 no \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{21}{40}\right)\) \(i\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{1640}(67,\cdot)\) 1640.dw 40 yes \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{13}{40}\right)\) \(i\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1640}(69,\cdot)\) 1640.du 40 yes \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{9}{40}\right)\) \(i\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1640}(71,\cdot)\) 1640.ds 40 no \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{37}{40}\right)\) \(i\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1640}(73,\cdot)\) 1640.bl 4 no \(-1\) \(1\) \(1\) \(-1\) \(1\) \(-i\) \(1\) \(1\) \(-i\) \(-1\) \(i\) \(1\)
\(\chi_{1640}(77,\cdot)\) 1640.do 20 yes \(-1\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(1\)
\(\chi_{1640}(79,\cdot)\) 1640.br 8 no \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(i\) \(-1\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1640}(81,\cdot)\) 1640.b 2 no \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\)
Click here to search among the remaining 608 characters.