sage: H = DirichletGroup(16384)
pari: g = idealstar(,16384,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 8192 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{4096}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{16384}(16383,\cdot)$, $\chi_{16384}(5,\cdot)$ |
First 32 of 8192 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{16384}(1,\cdot)\) | 16384.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{16384}(3,\cdot)\) | 16384.z | 4096 | yes | \(-1\) | \(1\) | \(e\left(\frac{969}{4096}\right)\) | \(e\left(\frac{1699}{4096}\right)\) | \(e\left(\frac{1871}{2048}\right)\) | \(e\left(\frac{969}{2048}\right)\) | \(e\left(\frac{415}{4096}\right)\) | \(e\left(\frac{1837}{4096}\right)\) | \(e\left(\frac{667}{1024}\right)\) | \(e\left(\frac{917}{1024}\right)\) | \(e\left(\frac{805}{4096}\right)\) | \(e\left(\frac{615}{4096}\right)\) |
\(\chi_{16384}(5,\cdot)\) | 16384.y | 4096 | yes | \(1\) | \(1\) | \(e\left(\frac{1699}{4096}\right)\) | \(e\left(\frac{1}{4096}\right)\) | \(e\left(\frac{1893}{2048}\right)\) | \(e\left(\frac{1699}{2048}\right)\) | \(e\left(\frac{3285}{4096}\right)\) | \(e\left(\frac{2031}{4096}\right)\) | \(e\left(\frac{425}{1024}\right)\) | \(e\left(\frac{103}{1024}\right)\) | \(e\left(\frac{2967}{4096}\right)\) | \(e\left(\frac{1389}{4096}\right)\) |
\(\chi_{16384}(7,\cdot)\) | 16384.x | 2048 | no | \(-1\) | \(1\) | \(e\left(\frac{1871}{2048}\right)\) | \(e\left(\frac{1893}{2048}\right)\) | \(e\left(\frac{985}{1024}\right)\) | \(e\left(\frac{847}{1024}\right)\) | \(e\left(\frac{1801}{2048}\right)\) | \(e\left(\frac{587}{2048}\right)\) | \(e\left(\frac{429}{512}\right)\) | \(e\left(\frac{419}{512}\right)\) | \(e\left(\frac{1939}{2048}\right)\) | \(e\left(\frac{1793}{2048}\right)\) |
\(\chi_{16384}(9,\cdot)\) | 16384.w | 2048 | no | \(1\) | \(1\) | \(e\left(\frac{969}{2048}\right)\) | \(e\left(\frac{1699}{2048}\right)\) | \(e\left(\frac{847}{1024}\right)\) | \(e\left(\frac{969}{1024}\right)\) | \(e\left(\frac{415}{2048}\right)\) | \(e\left(\frac{1837}{2048}\right)\) | \(e\left(\frac{155}{512}\right)\) | \(e\left(\frac{405}{512}\right)\) | \(e\left(\frac{805}{2048}\right)\) | \(e\left(\frac{615}{2048}\right)\) |
\(\chi_{16384}(11,\cdot)\) | 16384.z | 4096 | yes | \(-1\) | \(1\) | \(e\left(\frac{415}{4096}\right)\) | \(e\left(\frac{3285}{4096}\right)\) | \(e\left(\frac{1801}{2048}\right)\) | \(e\left(\frac{415}{2048}\right)\) | \(e\left(\frac{313}{4096}\right)\) | \(e\left(\frac{3547}{4096}\right)\) | \(e\left(\frac{925}{1024}\right)\) | \(e\left(\frac{435}{1024}\right)\) | \(e\left(\frac{163}{4096}\right)\) | \(e\left(\frac{4017}{4096}\right)\) |
\(\chi_{16384}(13,\cdot)\) | 16384.y | 4096 | yes | \(1\) | \(1\) | \(e\left(\frac{1837}{4096}\right)\) | \(e\left(\frac{2031}{4096}\right)\) | \(e\left(\frac{587}{2048}\right)\) | \(e\left(\frac{1837}{2048}\right)\) | \(e\left(\frac{3547}{4096}\right)\) | \(e\left(\frac{289}{4096}\right)\) | \(e\left(\frac{967}{1024}\right)\) | \(e\left(\frac{297}{1024}\right)\) | \(e\left(\frac{761}{4096}\right)\) | \(e\left(\frac{3011}{4096}\right)\) |
\(\chi_{16384}(15,\cdot)\) | 16384.v | 1024 | no | \(-1\) | \(1\) | \(e\left(\frac{667}{1024}\right)\) | \(e\left(\frac{425}{1024}\right)\) | \(e\left(\frac{429}{512}\right)\) | \(e\left(\frac{155}{512}\right)\) | \(e\left(\frac{925}{1024}\right)\) | \(e\left(\frac{967}{1024}\right)\) | \(e\left(\frac{17}{256}\right)\) | \(e\left(\frac{255}{256}\right)\) | \(e\left(\frac{943}{1024}\right)\) | \(e\left(\frac{501}{1024}\right)\) |
\(\chi_{16384}(17,\cdot)\) | 16384.u | 1024 | no | \(1\) | \(1\) | \(e\left(\frac{917}{1024}\right)\) | \(e\left(\frac{103}{1024}\right)\) | \(e\left(\frac{419}{512}\right)\) | \(e\left(\frac{405}{512}\right)\) | \(e\left(\frac{435}{1024}\right)\) | \(e\left(\frac{297}{1024}\right)\) | \(e\left(\frac{255}{256}\right)\) | \(e\left(\frac{113}{256}\right)\) | \(e\left(\frac{449}{1024}\right)\) | \(e\left(\frac{731}{1024}\right)\) |
\(\chi_{16384}(19,\cdot)\) | 16384.z | 4096 | yes | \(-1\) | \(1\) | \(e\left(\frac{805}{4096}\right)\) | \(e\left(\frac{2967}{4096}\right)\) | \(e\left(\frac{1939}{2048}\right)\) | \(e\left(\frac{805}{2048}\right)\) | \(e\left(\frac{163}{4096}\right)\) | \(e\left(\frac{761}{4096}\right)\) | \(e\left(\frac{943}{1024}\right)\) | \(e\left(\frac{449}{1024}\right)\) | \(e\left(\frac{2833}{4096}\right)\) | \(e\left(\frac{587}{4096}\right)\) |
\(\chi_{16384}(21,\cdot)\) | 16384.y | 4096 | yes | \(1\) | \(1\) | \(e\left(\frac{615}{4096}\right)\) | \(e\left(\frac{1389}{4096}\right)\) | \(e\left(\frac{1793}{2048}\right)\) | \(e\left(\frac{615}{2048}\right)\) | \(e\left(\frac{4017}{4096}\right)\) | \(e\left(\frac{3011}{4096}\right)\) | \(e\left(\frac{501}{1024}\right)\) | \(e\left(\frac{731}{1024}\right)\) | \(e\left(\frac{587}{4096}\right)\) | \(e\left(\frac{105}{4096}\right)\) |
\(\chi_{16384}(23,\cdot)\) | 16384.x | 2048 | no | \(-1\) | \(1\) | \(e\left(\frac{1333}{2048}\right)\) | \(e\left(\frac{1607}{2048}\right)\) | \(e\left(\frac{259}{1024}\right)\) | \(e\left(\frac{309}{1024}\right)\) | \(e\left(\frac{275}{2048}\right)\) | \(e\left(\frac{1353}{2048}\right)\) | \(e\left(\frac{223}{512}\right)\) | \(e\left(\frac{145}{512}\right)\) | \(e\left(\frac{1249}{2048}\right)\) | \(e\left(\frac{1851}{2048}\right)\) |
\(\chi_{16384}(25,\cdot)\) | 16384.w | 2048 | no | \(1\) | \(1\) | \(e\left(\frac{1699}{2048}\right)\) | \(e\left(\frac{1}{2048}\right)\) | \(e\left(\frac{869}{1024}\right)\) | \(e\left(\frac{675}{1024}\right)\) | \(e\left(\frac{1237}{2048}\right)\) | \(e\left(\frac{2031}{2048}\right)\) | \(e\left(\frac{425}{512}\right)\) | \(e\left(\frac{103}{512}\right)\) | \(e\left(\frac{919}{2048}\right)\) | \(e\left(\frac{1389}{2048}\right)\) |
\(\chi_{16384}(27,\cdot)\) | 16384.z | 4096 | yes | \(-1\) | \(1\) | \(e\left(\frac{2907}{4096}\right)\) | \(e\left(\frac{1001}{4096}\right)\) | \(e\left(\frac{1517}{2048}\right)\) | \(e\left(\frac{859}{2048}\right)\) | \(e\left(\frac{1245}{4096}\right)\) | \(e\left(\frac{1415}{4096}\right)\) | \(e\left(\frac{977}{1024}\right)\) | \(e\left(\frac{703}{1024}\right)\) | \(e\left(\frac{2415}{4096}\right)\) | \(e\left(\frac{1845}{4096}\right)\) |
\(\chi_{16384}(29,\cdot)\) | 16384.y | 4096 | yes | \(1\) | \(1\) | \(e\left(\frac{1361}{4096}\right)\) | \(e\left(\frac{1915}{4096}\right)\) | \(e\left(\frac{135}{2048}\right)\) | \(e\left(\frac{1361}{2048}\right)\) | \(e\left(\frac{3415}{4096}\right)\) | \(e\left(\frac{2261}{4096}\right)\) | \(e\left(\frac{819}{1024}\right)\) | \(e\left(\frac{637}{1024}\right)\) | \(e\left(\frac{653}{4096}\right)\) | \(e\left(\frac{1631}{4096}\right)\) |
\(\chi_{16384}(31,\cdot)\) | 16384.t | 512 | no | \(-1\) | \(1\) | \(e\left(\frac{179}{512}\right)\) | \(e\left(\frac{433}{512}\right)\) | \(e\left(\frac{85}{256}\right)\) | \(e\left(\frac{179}{256}\right)\) | \(e\left(\frac{325}{512}\right)\) | \(e\left(\frac{319}{512}\right)\) | \(e\left(\frac{25}{128}\right)\) | \(e\left(\frac{55}{128}\right)\) | \(e\left(\frac{359}{512}\right)\) | \(e\left(\frac{349}{512}\right)\) |
\(\chi_{16384}(33,\cdot)\) | 16384.s | 512 | no | \(1\) | \(1\) | \(e\left(\frac{173}{512}\right)\) | \(e\left(\frac{111}{512}\right)\) | \(e\left(\frac{203}{256}\right)\) | \(e\left(\frac{173}{256}\right)\) | \(e\left(\frac{91}{512}\right)\) | \(e\left(\frac{161}{512}\right)\) | \(e\left(\frac{71}{128}\right)\) | \(e\left(\frac{41}{128}\right)\) | \(e\left(\frac{121}{512}\right)\) | \(e\left(\frac{67}{512}\right)\) |
\(\chi_{16384}(35,\cdot)\) | 16384.z | 4096 | yes | \(-1\) | \(1\) | \(e\left(\frac{1345}{4096}\right)\) | \(e\left(\frac{3787}{4096}\right)\) | \(e\left(\frac{1815}{2048}\right)\) | \(e\left(\frac{1345}{2048}\right)\) | \(e\left(\frac{2791}{4096}\right)\) | \(e\left(\frac{3205}{4096}\right)\) | \(e\left(\frac{259}{1024}\right)\) | \(e\left(\frac{941}{1024}\right)\) | \(e\left(\frac{2749}{4096}\right)\) | \(e\left(\frac{879}{4096}\right)\) |
\(\chi_{16384}(37,\cdot)\) | 16384.y | 4096 | yes | \(1\) | \(1\) | \(e\left(\frac{1259}{4096}\right)\) | \(e\left(\frac{1305}{4096}\right)\) | \(e\left(\frac{477}{2048}\right)\) | \(e\left(\frac{1259}{2048}\right)\) | \(e\left(\frac{2509}{4096}\right)\) | \(e\left(\frac{343}{4096}\right)\) | \(e\left(\frac{641}{1024}\right)\) | \(e\left(\frac{271}{1024}\right)\) | \(e\left(\frac{1215}{4096}\right)\) | \(e\left(\frac{2213}{4096}\right)\) |
\(\chi_{16384}(39,\cdot)\) | 16384.x | 2048 | no | \(-1\) | \(1\) | \(e\left(\frac{1403}{2048}\right)\) | \(e\left(\frac{1865}{2048}\right)\) | \(e\left(\frac{205}{1024}\right)\) | \(e\left(\frac{379}{1024}\right)\) | \(e\left(\frac{1981}{2048}\right)\) | \(e\left(\frac{1063}{2048}\right)\) | \(e\left(\frac{305}{512}\right)\) | \(e\left(\frac{95}{512}\right)\) | \(e\left(\frac{783}{2048}\right)\) | \(e\left(\frac{1813}{2048}\right)\) |
\(\chi_{16384}(41,\cdot)\) | 16384.w | 2048 | no | \(1\) | \(1\) | \(e\left(\frac{2013}{2048}\right)\) | \(e\left(\frac{1919}{2048}\right)\) | \(e\left(\frac{539}{1024}\right)\) | \(e\left(\frac{989}{1024}\right)\) | \(e\left(\frac{171}{2048}\right)\) | \(e\left(\frac{145}{2048}\right)\) | \(e\left(\frac{471}{512}\right)\) | \(e\left(\frac{25}{512}\right)\) | \(e\left(\frac{233}{2048}\right)\) | \(e\left(\frac{1043}{2048}\right)\) |
\(\chi_{16384}(43,\cdot)\) | 16384.z | 4096 | yes | \(-1\) | \(1\) | \(e\left(\frac{983}{4096}\right)\) | \(e\left(\frac{3389}{4096}\right)\) | \(e\left(\frac{17}{2048}\right)\) | \(e\left(\frac{983}{2048}\right)\) | \(e\left(\frac{1985}{4096}\right)\) | \(e\left(\frac{1779}{4096}\right)\) | \(e\left(\frac{69}{1024}\right)\) | \(e\left(\frac{907}{1024}\right)\) | \(e\left(\frac{1531}{4096}\right)\) | \(e\left(\frac{1017}{4096}\right)\) |
\(\chi_{16384}(45,\cdot)\) | 16384.y | 4096 | yes | \(1\) | \(1\) | \(e\left(\frac{3637}{4096}\right)\) | \(e\left(\frac{3399}{4096}\right)\) | \(e\left(\frac{1539}{2048}\right)\) | \(e\left(\frac{1589}{2048}\right)\) | \(e\left(\frac{19}{4096}\right)\) | \(e\left(\frac{1609}{4096}\right)\) | \(e\left(\frac{735}{1024}\right)\) | \(e\left(\frac{913}{1024}\right)\) | \(e\left(\frac{481}{4096}\right)\) | \(e\left(\frac{2619}{4096}\right)\) |
\(\chi_{16384}(47,\cdot)\) | 16384.v | 1024 | no | \(-1\) | \(1\) | \(e\left(\frac{97}{1024}\right)\) | \(e\left(\frac{811}{1024}\right)\) | \(e\left(\frac{503}{512}\right)\) | \(e\left(\frac{97}{512}\right)\) | \(e\left(\frac{199}{1024}\right)\) | \(e\left(\frac{549}{1024}\right)\) | \(e\left(\frac{227}{256}\right)\) | \(e\left(\frac{77}{256}\right)\) | \(e\left(\frac{349}{1024}\right)\) | \(e\left(\frac{79}{1024}\right)\) |
\(\chi_{16384}(49,\cdot)\) | 16384.u | 1024 | no | \(1\) | \(1\) | \(e\left(\frac{847}{1024}\right)\) | \(e\left(\frac{869}{1024}\right)\) | \(e\left(\frac{473}{512}\right)\) | \(e\left(\frac{335}{512}\right)\) | \(e\left(\frac{777}{1024}\right)\) | \(e\left(\frac{587}{1024}\right)\) | \(e\left(\frac{173}{256}\right)\) | \(e\left(\frac{163}{256}\right)\) | \(e\left(\frac{915}{1024}\right)\) | \(e\left(\frac{769}{1024}\right)\) |
\(\chi_{16384}(51,\cdot)\) | 16384.z | 4096 | yes | \(-1\) | \(1\) | \(e\left(\frac{541}{4096}\right)\) | \(e\left(\frac{2111}{4096}\right)\) | \(e\left(\frac{1499}{2048}\right)\) | \(e\left(\frac{541}{2048}\right)\) | \(e\left(\frac{2155}{4096}\right)\) | \(e\left(\frac{3025}{4096}\right)\) | \(e\left(\frac{663}{1024}\right)\) | \(e\left(\frac{345}{1024}\right)\) | \(e\left(\frac{2601}{4096}\right)\) | \(e\left(\frac{3539}{4096}\right)\) |
\(\chi_{16384}(53,\cdot)\) | 16384.y | 4096 | yes | \(1\) | \(1\) | \(e\left(\frac{1583}{4096}\right)\) | \(e\left(\frac{1797}{4096}\right)\) | \(e\left(\frac{2041}{2048}\right)\) | \(e\left(\frac{1583}{2048}\right)\) | \(e\left(\frac{809}{4096}\right)\) | \(e\left(\frac{171}{4096}\right)\) | \(e\left(\frac{845}{1024}\right)\) | \(e\left(\frac{771}{1024}\right)\) | \(e\left(\frac{2803}{4096}\right)\) | \(e\left(\frac{1569}{4096}\right)\) |
\(\chi_{16384}(55,\cdot)\) | 16384.x | 2048 | no | \(-1\) | \(1\) | \(e\left(\frac{1057}{2048}\right)\) | \(e\left(\frac{1643}{2048}\right)\) | \(e\left(\frac{823}{1024}\right)\) | \(e\left(\frac{33}{1024}\right)\) | \(e\left(\frac{1799}{2048}\right)\) | \(e\left(\frac{741}{2048}\right)\) | \(e\left(\frac{163}{512}\right)\) | \(e\left(\frac{269}{512}\right)\) | \(e\left(\frac{1565}{2048}\right)\) | \(e\left(\frac{655}{2048}\right)\) |
\(\chi_{16384}(57,\cdot)\) | 16384.w | 2048 | no | \(1\) | \(1\) | \(e\left(\frac{887}{2048}\right)\) | \(e\left(\frac{285}{2048}\right)\) | \(e\left(\frac{881}{1024}\right)\) | \(e\left(\frac{887}{1024}\right)\) | \(e\left(\frac{289}{2048}\right)\) | \(e\left(\frac{1299}{2048}\right)\) | \(e\left(\frac{293}{512}\right)\) | \(e\left(\frac{171}{512}\right)\) | \(e\left(\frac{1819}{2048}\right)\) | \(e\left(\frac{601}{2048}\right)\) |
\(\chi_{16384}(59,\cdot)\) | 16384.z | 4096 | yes | \(-1\) | \(1\) | \(e\left(\frac{787}{4096}\right)\) | \(e\left(\frac{209}{4096}\right)\) | \(e\left(\frac{1397}{2048}\right)\) | \(e\left(\frac{787}{2048}\right)\) | \(e\left(\frac{485}{4096}\right)\) | \(e\left(\frac{2591}{4096}\right)\) | \(e\left(\frac{249}{1024}\right)\) | \(e\left(\frac{23}{1024}\right)\) | \(e\left(\frac{3655}{4096}\right)\) | \(e\left(\frac{3581}{4096}\right)\) |
\(\chi_{16384}(61,\cdot)\) | 16384.y | 4096 | yes | \(1\) | \(1\) | \(e\left(\frac{2521}{4096}\right)\) | \(e\left(\frac{339}{4096}\right)\) | \(e\left(\frac{703}{2048}\right)\) | \(e\left(\frac{473}{2048}\right)\) | \(e\left(\frac{3599}{4096}\right)\) | \(e\left(\frac{381}{4096}\right)\) | \(e\left(\frac{715}{1024}\right)\) | \(e\left(\frac{101}{1024}\right)\) | \(e\left(\frac{2293}{4096}\right)\) | \(e\left(\frac{3927}{4096}\right)\) |
\(\chi_{16384}(63,\cdot)\) | 16384.r | 256 | no | \(-1\) | \(1\) | \(e\left(\frac{99}{256}\right)\) | \(e\left(\frac{193}{256}\right)\) | \(e\left(\frac{101}{128}\right)\) | \(e\left(\frac{99}{128}\right)\) | \(e\left(\frac{21}{256}\right)\) | \(e\left(\frac{47}{256}\right)\) | \(e\left(\frac{9}{64}\right)\) | \(e\left(\frac{39}{64}\right)\) | \(e\left(\frac{87}{256}\right)\) | \(e\left(\frac{45}{256}\right)\) |