Properties

Label 1638.883
Modulus $1638$
Conductor $13$
Order $2$
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1638, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,1]))
 
pari: [g,chi] = znchar(Mod(883,1638))
 

Basic properties

Modulus: \(1638\)
Conductor: \(13\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{13}(12,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1638.c

\(\chi_{1638}(883,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{13}) \)

Values on generators

\((911,703,379)\) → \((1,1,-1)\)

Values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 1638 }(883, a) \) \(1\)\(1\)\(-1\)\(-1\)\(1\)\(-1\)\(1\)\(1\)\(1\)\(-1\)\(-1\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1638 }(883,a) \;\) at \(\;a = \) e.g. 2