Properties

Label 16272.gl
Modulus $16272$
Conductor $1808$
Order $28$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(16272, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([0,7,0,9])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(1477,16272)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(16272\)
Conductor: \(1808\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1808.cd
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{16272}(1477,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{16272}(1981,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{16272}(2341,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{16272}(4861,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{16272}(6229,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{16272}(8461,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{16272}(9829,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{16272}(12349,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{16272}(12709,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{16272}(13213,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{16272}(15085,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{16272}(15877,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{9}{14}\right)\)