Properties

Label 161.68
Modulus $161$
Conductor $161$
Order $6$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(161, base_ring=CyclotomicField(6))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([5,3]))
 
pari: [g,chi] = znchar(Mod(68,161))
 

Basic properties

Modulus: \(161\)
Conductor: \(161\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 161.g

\(\chi_{161}(45,\cdot)\) \(\chi_{161}(68,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-3}) \)
Fixed field: 6.6.204490769.1

Values on generators

\((24,120)\) → \((e\left(\frac{5}{6}\right),-1)\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 161 }(68,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{161}(68,\cdot)) = \sum_{r\in \Z/161\Z} \chi_{161}(68,r) e\left(\frac{2r}{161}\right) = 4.9043074384+-11.702468481i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 161 }(68,·),\chi_{ 161 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{161}(68,\cdot),\chi_{161}(1,\cdot)) = \sum_{r\in \Z/161\Z} \chi_{161}(68,r) \chi_{161}(1,1-r) = 1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 161 }(68,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{161}(68,·)) = \sum_{r \in \Z/161\Z} \chi_{161}(68,r) e\left(\frac{1 r + 2 r^{-1}}{161}\right) = 2.9926902599+-5.1834915815i \)