Properties

Label 161.38
Modulus $161$
Conductor $161$
Order $66$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(161, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,51]))
 
pari: [g,chi] = znchar(Mod(38,161))
 

Basic properties

Modulus: \(161\)
Conductor: \(161\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 161.o

\(\chi_{161}(5,\cdot)\) \(\chi_{161}(10,\cdot)\) \(\chi_{161}(17,\cdot)\) \(\chi_{161}(19,\cdot)\) \(\chi_{161}(33,\cdot)\) \(\chi_{161}(38,\cdot)\) \(\chi_{161}(40,\cdot)\) \(\chi_{161}(61,\cdot)\) \(\chi_{161}(66,\cdot)\) \(\chi_{161}(80,\cdot)\) \(\chi_{161}(89,\cdot)\) \(\chi_{161}(103,\cdot)\) \(\chi_{161}(122,\cdot)\) \(\chi_{161}(129,\cdot)\) \(\chi_{161}(136,\cdot)\) \(\chi_{161}(143,\cdot)\) \(\chi_{161}(145,\cdot)\) \(\chi_{161}(152,\cdot)\) \(\chi_{161}(157,\cdot)\) \(\chi_{161}(159,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((24,120)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{17}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 161 }(38, a) \) \(1\)\(1\)\(e\left(\frac{29}{33}\right)\)\(e\left(\frac{35}{66}\right)\)\(e\left(\frac{25}{33}\right)\)\(e\left(\frac{20}{33}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{16}{33}\right)\)\(e\left(\frac{41}{66}\right)\)\(e\left(\frac{19}{66}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 161 }(38,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 161 }(38,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 161 }(38,·),\chi_{ 161 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 161 }(38,·)) \;\) at \(\; a,b = \) e.g. 1,2