Properties

Label 1600.bu
Modulus $1600$
Conductor $400$
Order $20$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1600, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([0,15,8])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(81,1600)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1600\)
Conductor: \(400\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 400.be
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{1600}(81,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1600}(241,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1600}(561,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(-1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1600}(721,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(-1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1600}(881,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1600}(1041,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{1600}(1361,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(-1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1600}(1521,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(-1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{20}\right)\)