sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1600, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,1,0]))
pari:[g,chi] = znchar(Mod(901,1600))
\(\chi_{1600}(101,\cdot)\)
\(\chi_{1600}(301,\cdot)\)
\(\chi_{1600}(501,\cdot)\)
\(\chi_{1600}(701,\cdot)\)
\(\chi_{1600}(901,\cdot)\)
\(\chi_{1600}(1101,\cdot)\)
\(\chi_{1600}(1301,\cdot)\)
\(\chi_{1600}(1501,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1151,901,577)\) → \((1,e\left(\frac{1}{16}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 1600 }(901, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(-i\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) |
sage:chi.jacobi_sum(n)