# Properties

 Label 1600.23 Modulus $1600$ Conductor $800$ Order $40$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1600, base_ring=CyclotomicField(40))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([20,35,22]))

pari: [g,chi] = znchar(Mod(23,1600))

## Basic properties

 Modulus: $$1600$$ Conductor: $$800$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$40$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{800}(723,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1600.cl

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(1151,901,577)$$ → $$(-1,e\left(\frac{7}{8}\right),e\left(\frac{11}{20}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$7$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$21$$ $$23$$ $$27$$ $$1$$ $$1$$ $$e\left(\frac{39}{40}\right)$$ $$1$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{27}{40}\right)$$ $$e\left(\frac{23}{40}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{21}{40}\right)$$ $$e\left(\frac{39}{40}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{37}{40}\right)$$
 value at e.g. 2