Properties

Label 1600.107
Modulus $1600$
Conductor $320$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1600, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,13,4]))
 
Copy content pari:[g,chi] = znchar(Mod(107,1600))
 

Basic properties

Modulus: \(1600\)
Conductor: \(320\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{320}(107,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1600.br

\(\chi_{1600}(107,\cdot)\) \(\chi_{1600}(243,\cdot)\) \(\chi_{1600}(507,\cdot)\) \(\chi_{1600}(643,\cdot)\) \(\chi_{1600}(907,\cdot)\) \(\chi_{1600}(1043,\cdot)\) \(\chi_{1600}(1307,\cdot)\) \(\chi_{1600}(1443,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.147573952589676412928000000000000.2

Values on generators

\((1151,901,577)\) → \((-1,e\left(\frac{13}{16}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 1600 }(107, a) \) \(1\)\(1\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(1\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1600 }(107,a) \;\) at \(\;a = \) e.g. 2