Properties

Label 160.21
Modulus $160$
Conductor $32$
Order $8$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(160, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,5,0]))
 
Copy content pari:[g,chi] = znchar(Mod(21,160))
 

Basic properties

Modulus: \(160\)
Conductor: \(32\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{32}(21,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 160.x

\(\chi_{160}(21,\cdot)\) \(\chi_{160}(61,\cdot)\) \(\chi_{160}(101,\cdot)\) \(\chi_{160}(141,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: \(\Q(\zeta_{32})^+\)

Values on generators

\((31,101,97)\) → \((1,e\left(\frac{5}{8}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 160 }(21, a) \) \(1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(i\)\(-i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(-1\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(-i\)\(e\left(\frac{5}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 160 }(21,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 160 }(21,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 160 }(21,·),\chi_{ 160 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 160 }(21,·)) \;\) at \(\; a,b = \) e.g. 1,2