# Properties

 Label 1575.382 Modulus $1575$ Conductor $315$ Order $12$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1575)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([4,3,8]))

pari: [g,chi] = znchar(Mod(382,1575))

## Basic properties

 Modulus: $$1575$$ Conductor: $$315$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$12$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{315}(67,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1575.cp

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(1226,127,451)$$ → $$(e\left(\frac{1}{3}\right),i,e\left(\frac{2}{3}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$8$$ $$11$$ $$13$$ $$16$$ $$17$$ $$19$$ $$22$$ $$23$$ $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{12})$$ Fixed field: 12.0.484679258335001953125.2