Properties

Label 1560.389
Modulus $1560$
Conductor $1560$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1560, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,1,1,1,1]))
 
pari: [g,chi] = znchar(Mod(389,1560))
 

Kronecker symbol representation

sage: kronecker_character(-1560)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{-1560}{\bullet}\right)\)

Basic properties

Modulus: \(1560\)
Conductor: \(1560\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1560.y

\(\chi_{1560}(389,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-390}) \)

Values on generators

\((391,781,521,937,1081)\) → \((1,-1,-1,-1,-1)\)

Values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1560 }(389, a) \) \(-1\)\(1\)\(1\)\(-1\)\(1\)\(1\)\(1\)\(1\)\(-1\)\(-1\)\(1\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1560 }(389,a) \;\) at \(\;a = \) e.g. 2