Properties

Modulus $153$
Structure \(C_{2}\times C_{48}\)
Order $96$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(153)
 
pari: g = idealstar(,153,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 96
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{48}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{153}(137,\cdot)$, $\chi_{153}(37,\cdot)$

First 32 of 96 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{153}(1,\cdot)\) 153.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{153}(2,\cdot)\) 153.q 24 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{153}(4,\cdot)\) 153.n 12 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{153}(5,\cdot)\) 153.s 48 yes \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{153}(7,\cdot)\) 153.t 48 yes \(-1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{153}(8,\cdot)\) 153.k 8 no \(-1\) \(1\) \(i\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(1\)
\(\chi_{153}(10,\cdot)\) 153.p 16 no \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(-i\) \(e\left(\frac{11}{16}\right)\) \(-1\)
\(\chi_{153}(11,\cdot)\) 153.s 48 yes \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{153}(13,\cdot)\) 153.n 12 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{153}(14,\cdot)\) 153.s 48 yes \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{153}(16,\cdot)\) 153.h 6 yes \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{153}(19,\cdot)\) 153.l 8 no \(1\) \(1\) \(i\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(1\)
\(\chi_{153}(20,\cdot)\) 153.s 48 yes \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{153}(22,\cdot)\) 153.t 48 yes \(-1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{153}(23,\cdot)\) 153.s 48 yes \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{153}(25,\cdot)\) 153.r 24 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{153}(26,\cdot)\) 153.k 8 no \(-1\) \(1\) \(i\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(1\)
\(\chi_{153}(28,\cdot)\) 153.p 16 no \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(-i\) \(e\left(\frac{15}{16}\right)\) \(-1\)
\(\chi_{153}(29,\cdot)\) 153.s 48 yes \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{153}(31,\cdot)\) 153.t 48 yes \(-1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{153}(32,\cdot)\) 153.q 24 yes \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{153}(35,\cdot)\) 153.b 2 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\)
\(\chi_{153}(37,\cdot)\) 153.p 16 no \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(i\) \(e\left(\frac{9}{16}\right)\) \(-1\)
\(\chi_{153}(38,\cdot)\) 153.m 12 yes \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{153}(40,\cdot)\) 153.t 48 yes \(-1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{153}(41,\cdot)\) 153.s 48 yes \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{153}(43,\cdot)\) 153.r 24 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(i\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{153}(44,\cdot)\) 153.o 16 no \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(-i\) \(e\left(\frac{3}{16}\right)\) \(-1\)
\(\chi_{153}(46,\cdot)\) 153.p 16 no \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(i\) \(e\left(\frac{5}{16}\right)\) \(-1\)
\(\chi_{153}(47,\cdot)\) 153.m 12 yes \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{153}(49,\cdot)\) 153.r 24 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(-i\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{153}(50,\cdot)\) 153.i 6 yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
Click here to search among the remaining 64 characters.