Properties

 Label 1520.1329 Modulus $1520$ Conductor $95$ Order $2$ Real yes Primitive no Minimal no Parity odd

Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1520, base_ring=CyclotomicField(2))

M = H._module

chi = DirichletCharacter(H, M([0,0,1,1]))

pari: [g,chi] = znchar(Mod(1329,1520))

Basic properties

 Modulus: $$1520$$ Conductor: $$95$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: no, induced from $$\chi_{95}(94,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

Galois orbit 1520.m

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{-95})$$

Values on generators

$$(191,1141,1217,401)$$ → $$(1,1,-1,-1)$$

First values

 $$a$$ $$-1$$ $$1$$ $$3$$ $$7$$ $$9$$ $$11$$ $$13$$ $$17$$ $$21$$ $$23$$ $$27$$ $$29$$ $$\chi_{ 1520 }(1329, a)$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 1520 }(1329,a) \;$$ at $$\;a =$$ e.g. 2