Properties

Label 1519.935
Modulus $1519$
Conductor $1519$
Order $21$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1519, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([10,28]))
 
Copy content pari:[g,chi] = znchar(Mod(935,1519))
 

Basic properties

Modulus: \(1519\)
Conductor: \(1519\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(21\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1519.bj

\(\chi_{1519}(149,\cdot)\) \(\chi_{1519}(284,\cdot)\) \(\chi_{1519}(366,\cdot)\) \(\chi_{1519}(501,\cdot)\) \(\chi_{1519}(583,\cdot)\) \(\chi_{1519}(718,\cdot)\) \(\chi_{1519}(800,\cdot)\) \(\chi_{1519}(935,\cdot)\) \(\chi_{1519}(1017,\cdot)\) \(\chi_{1519}(1152,\cdot)\) \(\chi_{1519}(1234,\cdot)\) \(\chi_{1519}(1369,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 21.21.98353367498957471525704156941061377491148627676882129.2

Values on generators

\((1179,344)\) → \((e\left(\frac{5}{21}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 1519 }(935, a) \) \(1\)\(1\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{2}{7}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1519 }(935,a) \;\) at \(\;a = \) e.g. 2