sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1480, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,18,18,11]))
pari:[g,chi] = znchar(Mod(1419,1480))
| Modulus: | \(1480\) | |
| Conductor: | \(1480\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1480}(19,\cdot)\)
\(\chi_{1480}(59,\cdot)\)
\(\chi_{1480}(459,\cdot)\)
\(\chi_{1480}(499,\cdot)\)
\(\chi_{1480}(579,\cdot)\)
\(\chi_{1480}(779,\cdot)\)
\(\chi_{1480}(819,\cdot)\)
\(\chi_{1480}(979,\cdot)\)
\(\chi_{1480}(1019,\cdot)\)
\(\chi_{1480}(1179,\cdot)\)
\(\chi_{1480}(1219,\cdot)\)
\(\chi_{1480}(1419,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1111,741,297,1001)\) → \((-1,-1,-1,e\left(\frac{11}{36}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 1480 }(1419, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)