from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1480, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,18,27,32]))
pari: [g,chi] = znchar(Mod(1043,1480))
Basic properties
Modulus: | \(1480\) | |
Conductor: | \(1480\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1480.dw
\(\chi_{1480}(83,\cdot)\) \(\chi_{1480}(107,\cdot)\) \(\chi_{1480}(123,\cdot)\) \(\chi_{1480}(403,\cdot)\) \(\chi_{1480}(747,\cdot)\) \(\chi_{1480}(867,\cdot)\) \(\chi_{1480}(1043,\cdot)\) \(\chi_{1480}(1107,\cdot)\) \(\chi_{1480}(1163,\cdot)\) \(\chi_{1480}(1267,\cdot)\) \(\chi_{1480}(1307,\cdot)\) \(\chi_{1480}(1403,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | Number field defined by a degree 36 polynomial |
Values on generators
\((1111,741,297,1001)\) → \((-1,-1,-i,e\left(\frac{8}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 1480 }(1043, a) \) | \(1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
sage: chi.jacobi_sum(n)