sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(148, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,31]))
pari:[g,chi] = znchar(Mod(133,148))
\(\chi_{148}(5,\cdot)\)
\(\chi_{148}(13,\cdot)\)
\(\chi_{148}(17,\cdot)\)
\(\chi_{148}(57,\cdot)\)
\(\chi_{148}(61,\cdot)\)
\(\chi_{148}(69,\cdot)\)
\(\chi_{148}(89,\cdot)\)
\(\chi_{148}(93,\cdot)\)
\(\chi_{148}(109,\cdot)\)
\(\chi_{148}(113,\cdot)\)
\(\chi_{148}(129,\cdot)\)
\(\chi_{148}(133,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((75,113)\) → \((1,e\left(\frac{31}{36}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 148 }(133, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)