Properties

Label 1476.665
Modulus $1476$
Conductor $123$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1476, base_ring=CyclotomicField(4))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,2,3]))
 
pari: [g,chi] = znchar(Mod(665,1476))
 

Basic properties

Modulus: \(1476\)
Conductor: \(123\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{123}(50,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1476.l

\(\chi_{1476}(665,\cdot)\) \(\chi_{1476}(1385,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-1}) \)
Fixed field: 4.0.620289.1

Values on generators

\((739,821,1441)\) → \((1,-1,-i)\)

Values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 1476 }(665, a) \) \(-1\)\(1\)\(1\)\(i\)\(-i\)\(i\)\(i\)\(-i\)\(-1\)\(1\)\(-i\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1476 }(665,a) \;\) at \(\;a = \) e.g. 2