# Properties

 Label 1470.101 Modulus $1470$ Conductor $147$ Order $42$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1470)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([21,0,1]))

pari: [g,chi] = znchar(Mod(101,1470))

## Basic properties

 Modulus: $$1470$$ Conductor: $$147$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$42$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{147}(101,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1470.bo

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(491,1177,1081)$$ → $$(-1,1,e\left(\frac{1}{42}\right))$$

## Values

 $$-1$$ $$1$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$1$$ $$1$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{7}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{21})$$ Fixed field: $$\Q(\zeta_{147})^+$$