sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(147, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,10]))
pari:[g,chi] = znchar(Mod(53,147))
| Modulus: | \(147\) | |
| Conductor: | \(147\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{147}(2,\cdot)\)
\(\chi_{147}(11,\cdot)\)
\(\chi_{147}(23,\cdot)\)
\(\chi_{147}(32,\cdot)\)
\(\chi_{147}(44,\cdot)\)
\(\chi_{147}(53,\cdot)\)
\(\chi_{147}(65,\cdot)\)
\(\chi_{147}(74,\cdot)\)
\(\chi_{147}(86,\cdot)\)
\(\chi_{147}(95,\cdot)\)
\(\chi_{147}(107,\cdot)\)
\(\chi_{147}(137,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((50,52)\) → \((-1,e\left(\frac{5}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 147 }(53, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)