Properties

Label 147.143
Modulus $147$
Conductor $147$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(147, base_ring=CyclotomicField(42))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([21,31]))
 
pari: [g,chi] = znchar(Mod(143,147))
 

Basic properties

Modulus: \(147\)
Conductor: \(147\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 147.o

\(\chi_{147}(5,\cdot)\) \(\chi_{147}(17,\cdot)\) \(\chi_{147}(26,\cdot)\) \(\chi_{147}(38,\cdot)\) \(\chi_{147}(47,\cdot)\) \(\chi_{147}(59,\cdot)\) \(\chi_{147}(89,\cdot)\) \(\chi_{147}(101,\cdot)\) \(\chi_{147}(110,\cdot)\) \(\chi_{147}(122,\cdot)\) \(\chi_{147}(131,\cdot)\) \(\chi_{147}(143,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: \(\Q(\zeta_{147})^+\)

Values on generators

\((50,52)\) → \((-1,e\left(\frac{31}{42}\right))\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\(1\)\(1\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{5}{6}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 147 }(143,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{147}(143,\cdot)) = \sum_{r\in \Z/147\Z} \chi_{147}(143,r) e\left(\frac{2r}{147}\right) = 9.9440601114+6.9365458623i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 147 }(143,·),\chi_{ 147 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{147}(143,\cdot),\chi_{147}(1,\cdot)) = \sum_{r\in \Z/147\Z} \chi_{147}(143,r) \chi_{147}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 147 }(143,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{147}(143,·)) = \sum_{r \in \Z/147\Z} \chi_{147}(143,r) e\left(\frac{1 r + 2 r^{-1}}{147}\right) = -0.0 \)