Properties

Label 1469.1468
Modulus $1469$
Conductor $1469$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1469, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1]))
 
pari: [g,chi] = znchar(Mod(1468,1469))
 

Kronecker symbol representation

sage: kronecker_character(1469)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{1469}{\bullet}\right)\)

Basic properties

Modulus: \(1469\)
Conductor: \(1469\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1469.b

\(\chi_{1469}(1468,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{1469}) \)

Values on generators

\((340,794)\) → \((-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 1469 }(1468, a) \) \(1\)\(1\)\(-1\)\(-1\)\(1\)\(1\)\(1\)\(-1\)\(-1\)\(1\)\(-1\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1469 }(1468,a) \;\) at \(\;a = \) e.g. 2