Properties

Label 1456.113
Modulus $1456$
Conductor $13$
Order $3$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([0,0,0,4]))
 
Copy content pari:[g,chi] = znchar(Mod(113,1456))
 

Basic properties

Modulus: \(1456\)
Conductor: \(13\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(3\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{13}(9,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1456.s

\(\chi_{1456}(113,\cdot)\) \(\chi_{1456}(1121,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(\zeta_3)\)
Fixed field: 3.3.169.1

Values on generators

\((911,1093,1249,561)\) → \((1,1,1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(15\)\(17\)\(19\)\(23\)\(25\)\(27\)
\( \chi_{ 1456 }(113, a) \) \(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1456 }(113,a) \;\) at \(\;a = \) e.g. 2