# Properties

 Label 145.t Modulus $145$ Conductor $145$ Order $28$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(145, base_ring=CyclotomicField(28))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([21,5]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(3,145))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$145$$ Conductor: $$145$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$28$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{28})$$ Fixed field: 28.28.1455848000512373226044338588471370773272037506103515625.2

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$
$$\chi_{145}(3,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$1$$ $$e\left(\frac{13}{28}\right)$$
$$\chi_{145}(27,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$1$$ $$e\left(\frac{11}{28}\right)$$
$$\chi_{145}(37,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$1$$ $$e\left(\frac{19}{28}\right)$$
$$\chi_{145}(43,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$1$$ $$e\left(\frac{17}{28}\right)$$
$$\chi_{145}(47,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$1$$ $$e\left(\frac{23}{28}\right)$$
$$\chi_{145}(48,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$1$$ $$e\left(\frac{1}{28}\right)$$
$$\chi_{145}(97,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$1$$ $$e\left(\frac{15}{28}\right)$$
$$\chi_{145}(98,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$1$$ $$e\left(\frac{9}{28}\right)$$
$$\chi_{145}(102,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$1$$ $$e\left(\frac{3}{28}\right)$$
$$\chi_{145}(108,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$1$$ $$e\left(\frac{5}{28}\right)$$
$$\chi_{145}(118,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$1$$ $$e\left(\frac{25}{28}\right)$$
$$\chi_{145}(142,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$1$$ $$e\left(\frac{27}{28}\right)$$