# Properties

 Label 145.11 Modulus $145$ Conductor $29$ Order $28$ Real no Primitive no Minimal yes Parity odd

# Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(145, base_ring=CyclotomicField(28))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,25]))

pari: [g,chi] = znchar(Mod(11,145))

## Basic properties

 Modulus: $$145$$ Conductor: $$29$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$28$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{29}(11,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 145.r

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{28})$$ Fixed field: $$\Q(\zeta_{29})$$

## Values on generators

$$(117,31)$$ → $$(1,e\left(\frac{25}{28}\right))$$

## Values

 $$a$$ $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$ $$\chi_{ 145 }(11, a)$$ $$-1$$ $$1$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$i$$ $$e\left(\frac{1}{14}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 145 }(11,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 145 }(11,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 145 }(11,·),\chi_{ 145 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 145 }(11,·)) \;$$ at $$\; a,b =$$ e.g. 1,2