Properties

 Label 145.r Modulus $145$ Conductor $29$ Order $28$ Real no Primitive no Minimal yes Parity odd

Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(145, base_ring=CyclotomicField(28))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,25]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(11,145))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Basic properties

 Modulus: $$145$$ Conductor: $$29$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$28$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 29.f sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

Related number fields

 Field of values: $$\Q(\zeta_{28})$$ Fixed field: $$\Q(\zeta_{29})$$

Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$6$$ $$7$$ $$8$$ $$9$$ $$11$$ $$12$$ $$13$$
$$\chi_{145}(11,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$i$$ $$e\left(\frac{1}{14}\right)$$
$$\chi_{145}(21,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$i$$ $$e\left(\frac{13}{14}\right)$$
$$\chi_{145}(26,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$-i$$ $$e\left(\frac{3}{14}\right)$$
$$\chi_{145}(31,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$i$$ $$e\left(\frac{9}{14}\right)$$
$$\chi_{145}(56,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{3}{7}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$-i$$ $$e\left(\frac{9}{14}\right)$$
$$\chi_{145}(61,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{1}{7}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$i$$ $$e\left(\frac{3}{14}\right)$$
$$\chi_{145}(66,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{2}{7}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{1}{14}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$-i$$ $$e\left(\frac{13}{14}\right)$$
$$\chi_{145}(76,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{5}{14}\right)$$ $$e\left(\frac{5}{7}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$-i$$ $$e\left(\frac{1}{14}\right)$$
$$\chi_{145}(101,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$i$$ $$e\left(\frac{5}{14}\right)$$
$$\chi_{145}(106,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$i$$ $$e\left(\frac{11}{14}\right)$$
$$\chi_{145}(126,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{6}{7}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{3}{14}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$-i$$ $$e\left(\frac{11}{14}\right)$$
$$\chi_{145}(131,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{13}{14}\right)$$ $$e\left(\frac{11}{14}\right)$$ $$e\left(\frac{4}{7}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{9}{14}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$-i$$ $$e\left(\frac{5}{14}\right)$$