Properties

Label 145.q
Modulus $145$
Conductor $145$
Order $28$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(145, base_ring=CyclotomicField(28))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([21,18]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(13,145))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(145\)
Conductor: \(145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.0.50201655190081835380839261671426578388690948486328125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{145}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(i\) \(e\left(\frac{23}{28}\right)\)
\(\chi_{145}(22,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(-i\) \(e\left(\frac{13}{28}\right)\)
\(\chi_{145}(33,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(i\) \(e\left(\frac{15}{28}\right)\)
\(\chi_{145}(38,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(i\) \(e\left(\frac{19}{28}\right)\)
\(\chi_{145}(42,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{14}\right)\) \(-i\) \(e\left(\frac{9}{28}\right)\)
\(\chi_{145}(62,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{14}\right)\) \(-i\) \(e\left(\frac{1}{28}\right)\)
\(\chi_{145}(63,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(i\) \(e\left(\frac{11}{28}\right)\)
\(\chi_{145}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{13}{14}\right)\) \(-i\) \(e\left(\frac{5}{28}\right)\)
\(\chi_{145}(92,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{9}{14}\right)\) \(-i\) \(e\left(\frac{25}{28}\right)\)
\(\chi_{145}(93,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(i\) \(e\left(\frac{3}{28}\right)\)
\(\chi_{145}(122,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{14}\right)\) \(-i\) \(e\left(\frac{17}{28}\right)\)
\(\chi_{145}(138,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{3}{14}\right)\) \(i\) \(e\left(\frac{27}{28}\right)\)