Properties

Label 145.113
Modulus $145$
Conductor $145$
Order $28$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(145, base_ring=CyclotomicField(28))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([21,19]))
 
pari: [g,chi] = znchar(Mod(113,145))
 

Basic properties

Modulus: \(145\)
Conductor: \(145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(28\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 145.o

\(\chi_{145}(2,\cdot)\) \(\chi_{145}(8,\cdot)\) \(\chi_{145}(18,\cdot)\) \(\chi_{145}(32,\cdot)\) \(\chi_{145}(68,\cdot)\) \(\chi_{145}(72,\cdot)\) \(\chi_{145}(73,\cdot)\) \(\chi_{145}(77,\cdot)\) \(\chi_{145}(113,\cdot)\) \(\chi_{145}(127,\cdot)\) \(\chi_{145}(137,\cdot)\) \(\chi_{145}(143,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: 28.28.1455848000512373226044338588471370773272037506103515625.1

Values on generators

\((117,31)\) → \((-i,e\left(\frac{19}{28}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\(1\)\(1\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{25}{28}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{27}{28}\right)\)\(-1\)\(e\left(\frac{13}{28}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 145 }(113,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 145 }(113,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 145 }(113,·),\chi_{ 145 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 145 }(113,·)) \;\) at \(\; a,b = \) e.g. 1,2