Properties

 Label 1441.i Modulus $1441$ Conductor $1441$ Order $5$ Real no Primitive yes Minimal yes Parity even

Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1441, base_ring=CyclotomicField(10))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([2,2]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(708,1441))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Basic properties

 Modulus: $$1441$$ Conductor: $$1441$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$5$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

Related number fields

 Field of values: $$\Q(\zeta_{5})$$ Fixed field: 5.5.4311773343361.3

Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$7$$ $$8$$ $$9$$ $$10$$ $$12$$
$$\chi_{1441}(708,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$
$$\chi_{1441}(1109,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$1$$ $$e\left(\frac{2}{5}\right)$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{1441}(1237,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$
$$\chi_{1441}(1268,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$1$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$