Properties

Label 1441.cd
Modulus $1441$
Conductor $1441$
Order $130$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1441, base_ring=CyclotomicField(130))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([26,19]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(26,1441))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1441\)
Conductor: \(1441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(130\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{65})$
Fixed field: Number field defined by a degree 130 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{1441}(26,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{113}{130}\right)\) \(e\left(\frac{53}{65}\right)\)
\(\chi_{1441}(124,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{79}{130}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{42}{65}\right)\)
\(\chi_{1441}(137,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{51}{130}\right)\) \(e\left(\frac{36}{65}\right)\)
\(\chi_{1441}(141,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{54}{65}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{103}{130}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{43}{65}\right)\) \(e\left(\frac{129}{130}\right)\) \(e\left(\frac{49}{65}\right)\)
\(\chi_{1441}(148,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{97}{130}\right)\) \(e\left(\frac{36}{65}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{31}{65}\right)\)
\(\chi_{1441}(168,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{29}{130}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{107}{130}\right)\) \(e\left(\frac{22}{65}\right)\)
\(\chi_{1441}(181,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{46}{65}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{107}{130}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{81}{130}\right)\) \(e\left(\frac{61}{65}\right)\)
\(\chi_{1441}(185,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{29}{65}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{59}{130}\right)\) \(e\left(\frac{34}{65}\right)\)
\(\chi_{1441}(207,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{49}{130}\right)\) \(e\left(\frac{4}{65}\right)\)
\(\chi_{1441}(246,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{123}{130}\right)\) \(e\left(\frac{18}{65}\right)\)
\(\chi_{1441}(247,\cdot)\) \(-1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{36}{65}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{47}{130}\right)\) \(e\left(\frac{61}{65}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{21}{130}\right)\) \(e\left(\frac{11}{65}\right)\)
\(\chi_{1441}(284,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{53}{130}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{79}{130}\right)\) \(e\left(\frac{29}{65}\right)\)
\(\chi_{1441}(355,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{61}{65}\right)\) \(e\left(\frac{119}{130}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{32}{65}\right)\)
\(\chi_{1441}(366,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{129}{130}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{62}{65}\right)\)
\(\chi_{1441}(388,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{69}{130}\right)\) \(e\left(\frac{37}{65}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{49}{65}\right)\) \(e\left(\frac{17}{130}\right)\) \(e\left(\frac{12}{65}\right)\)
\(\chi_{1441}(401,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{43}{65}\right)\) \(e\left(\frac{37}{130}\right)\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{11}{130}\right)\) \(e\left(\frac{46}{65}\right)\)
\(\chi_{1441}(433,\cdot)\) \(-1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{41}{130}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{93}{130}\right)\) \(e\left(\frac{58}{65}\right)\)
\(\chi_{1441}(476,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{49}{130}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{127}{130}\right)\) \(e\left(\frac{17}{65}\right)\)
\(\chi_{1441}(511,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{22}{65}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{16}{65}\right)\)
\(\chi_{1441}(553,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{42}{65}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{109}{130}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{57}{130}\right)\) \(e\left(\frac{2}{65}\right)\)
\(\chi_{1441}(554,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{81}{130}\right)\) \(e\left(\frac{18}{65}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{1}{65}\right)\) \(e\left(\frac{3}{130}\right)\) \(e\left(\frac{48}{65}\right)\)
\(\chi_{1441}(581,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{63}{130}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{89}{130}\right)\) \(e\left(\frac{59}{65}\right)\)
\(\chi_{1441}(609,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{101}{130}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{51}{65}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{43}{65}\right)\)
\(\chi_{1441}(619,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{17}{65}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{89}{130}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{37}{130}\right)\) \(e\left(\frac{7}{65}\right)\)
\(\chi_{1441}(669,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{34}{65}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{113}{130}\right)\) \(e\left(\frac{54}{65}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{9}{130}\right)\) \(e\left(\frac{14}{65}\right)\)
\(\chi_{1441}(686,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{43}{65}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{11}{130}\right)\) \(e\left(\frac{53}{65}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{63}{130}\right)\) \(e\left(\frac{33}{65}\right)\)
\(\chi_{1441}(742,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{87}{130}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{42}{65}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{1}{65}\right)\)
\(\chi_{1441}(752,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{61}{65}\right)\) \(e\left(\frac{53}{130}\right)\) \(e\left(\frac{3}{65}\right)\)
\(\chi_{1441}(753,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{127}{130}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{12}{65}\right)\) \(e\left(\frac{101}{130}\right)\) \(e\left(\frac{56}{65}\right)\)
\(\chi_{1441}(774,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{33}{130}\right)\) \(e\left(\frac{8}{65}\right)\)
\(\chi_{1441}(896,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{57}{130}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{32}{65}\right)\) \(e\left(\frac{31}{130}\right)\) \(e\left(\frac{41}{65}\right)\)