# Properties

 Label 144.65 Modulus $144$ Conductor $9$ Order $6$ Real no Primitive no Minimal no Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(144)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,0,1]))

pari: [g,chi] = znchar(Mod(65,144))

## Basic properties

 Modulus: $$144$$ Conductor: $$9$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{9}(2,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 144.q

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(127,37,65)$$ → $$(1,1,e\left(\frac{1}{6}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: $$\Q(\zeta_{9})$$

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 144 }(65,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{144}(65,\cdot)) = \sum_{r\in \Z/144\Z} \chi_{144}(65,r) e\left(\frac{r}{72}\right) = -0.0$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 144 }(65,·),\chi_{ 144 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{144}(65,\cdot),\chi_{144}(1,\cdot)) = \sum_{r\in \Z/144\Z} \chi_{144}(65,r) \chi_{144}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 144 }(65,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{144}(65,·)) = \sum_{r \in \Z/144\Z} \chi_{144}(65,r) e\left(\frac{1 r + 2 r^{-1}}{144}\right) = -0.0$$